

Final Design Report

Odell Dam Safety Analysis

Prepared for: Charles Schlinger Bridget Bero Mark Lamer

Submitted by: Braedan Hinojosa Ibrahim Atout Sharlot Eisentraut Chandler Hammond Yaowan Ma

December 8th 2014

Table of Contents

Acknowl	ledgments	3
1. Proj	ject Description	1
1.1	Project Understanding	5
1.2	Current Condition	5
1.3	Constraints and Limitations	5
1.4	Approach	5
2. Bac	kground	7
2.1	Need for Dam Safety Analysis	7
2.2	Past Dam Failures	7
3. Test	ting and Analysis	3
3.1	Surveying	3
3.2	Geotechnical Analysis)
3.2.	1 Soil Sampling)
3.2.	2 Sieve Analysis)
3.2.	.3 Soil Classification)
3.2.	.4 RocScience – Slope Stability Modeling Software)
3.3	Hydrologic Analysis	3
3.3.	1 Watershed Delineation	3
3.3.	2 Rainfall Intensities	1
3.3.	.3 Curve Numbers	1
3.3.	4 Time of Concentration	1
3.3.	.5 Reservoir Storage	5
3.3.	.6 Bentley PondPack – Hydrologic Modeling Software	5
4. Fina	al Results18	3
4.1	RocScience Slide Modeling	3
4.2	Bentley PondPack Modeling18	3
4.3	Post-burn Discussion	3
4.4	Final Recommendations	3
5. Sun	nmary of Project Cost)
5.1	Post Cost Analysis)
6. Ref	Perences	1

7. Appendices	
Appendix A – ADWR Doc. Inventory	
Appendix B- Surveying Raw Point Data	
Appendix C – Sieve Analysis Results	
Appendix D- Locations of Sampling	
Appendix E – Classification Flow Chart	
Appendix F – FEMA Flood Maps	
Appendix G- Watershed Delineation	
Appendix H – NOAA Atlas 14' Intensities	
Appendix I – Oak Creek Flood Warning	
Appendix J – Time Depth Table	
Appendix K – Time Depth Curves	
Appendix L – Inflow Hydrographs	
Appendix M – Gantt Chart – Final	
Appendix N – Gantt Chart – Proposal	

List of Figures

Figure 1: Project Site, Odell Dam, Munds Park, Arizona	4
Figure 2: Current state of the dam's spillway.	5
Figure 3: Previous Spillway Failure	7
Figure 4: Preliminary Dam Geometry	8
Figure 5: Overview of all AutoCAD generated cross-sections	10
Figure 6: Results from a Heel to Toe Analysis	11
Figure 7: Results from a Toe to Heel Analysis	12
Figure 8: Odell Dam's Contributing Watershed	13
Figure 9: Reservoir Storage Indication Curve.	15
Figure 10: Bentley PondPack Model	16

List of Tables

7
7
9
9
9

Acknowledgments

The Odell Dam Safety Analysis Team would like to thank the following people and organizations for their contributions to our project:

Northern Arizona University - Civil Engineering Department

Charles Schlinger, Ph.D., P.E., Assoc. Professor

Mark Lamer, P.E, M.Eng, Lecturer

Bridget N. Bero Ph.D., P.E., Professor

Alarick Reiboldt, Lecturer

Arizona Department of Water Resources

Waleed Aboshanp

Peggy Beckett

Mike Johnson

Pinewood Country Club - Owners of Odell Lake

Dan Bright

Gary Harper

William Hochgraef

Bruce Moore

Coconino County – Geographic Information Systems (GIS)

Helen Costello

Mark A. Hunter

1. Project Description

Project Name: Odell Dam Safety Analysis

Project Location: The dam in consideration is the Odell dam, located in Munds Park, Arizona. This is roughly 20 miles south of Flagstaff, Arizona. The location of the dam at center is N34°56'0.0666", W111°38'0.5562" on the NAD83 coordinate system.

The project site can be seen in Figure 1. [1]

Figure 1: Project Site, Odell Dam, Munds Park, Arizona.

1.1 Project Understanding

The purpose of this project is to perform a safety analysis for Odell Dam, and to evaluate whether the dam can safely pass flood flows. Geotechnical and hydrologic methods will be used to evaluate aspects of dam safety. Analyses performed will follow Arizona Department of Water Resources (ADWR) guidance's and standards of practice.

The team will also consider post-burn conditions of the watershed that may impact the safety of the dam. Due to the high fire hazards in the Northern Arizona region during the months prior to and after the monsoon season, consideration post-fire floods is an important aspect of evaluation for this structure.

1.2 Current Condition

The dam is an earthen dam, gravity fed, and its primary purpose is the storage of water as a recreational lake. The dam's construction was finished in the 1940s, with multiple changes made to Odell Dam the last in 1983. [2] These changes range from reconstruction to spillway relocation. According to ADWR documentation, the dam measures to be 20 feet in height and is 460 feet long. The dam has a concrete spillway located at the south end of the structure. [3] The spillway measures 80 feet wide and 7 feet in height. The dam's status has been deemed "unsafe, non-emergency requiring remediation". [4] The current condition can be seen in Figure 2.

Figure 2: Current state of the dam's spillway.

Located on the south end of the project site. The dam's spillway currently has evidence of erosion and left over debris of the old spillway when it failed in 1983. Photograph taken by Braedan Hinojosa

1.3 Constraints and Limitations

Some potential challenges the team has experienced are established to be the following:

- Not all preexisting data could be found.
 - Missing data and documentation.
 - Outdated data and documentation.

Example: The information for the reservoir's storage capacity was limited to the storage area from the crest of the spillway to the top of the dam, and did not include any information on what the storage volume was underneath the assumed water line.

1.4 Approach

Information pertinent to a dam safety analysis includes; the existing conditions of the dam, purpose of the dam, engineering properties of the soil within the dam and the surrounding area, watershed conditions and forecasted runoff, and current geostructural conditions of the dam.

The technical approach that has been established is a series of analyses and are as follows:

- 1. A survey analysis to establish key features such as; height, length, and width of the dam.
- 2. A side slope stability analysis to determine the integrity of the dam with the water elevation equal to the top of the dam.
- 3. A hydrologic analysis for a spillway failure and overtopping.
- 4. A failure assessment to generate the most likely failure methods.

The team has been asked by Mark Lamer to provide qualitative answers for the following questions:

- 1. What storm event will contribute to a dam failure?
- 2. Determine the adequacy of the spillway capacity and side slope stability.
- 3. A discussion on the effects of post-fire flooding.

2. Background

2.1 Need for Dam Safety Analysis

Dam safety analysis is conducted to determine the potential hazards associated with existing dams. Many earthen dams, like that of Odell Dam, were built long ago with less restrictions and safety protocols. It is important to conduct geotechnical and hydrologic analyses of older dams to ensure that they do not pose a threat.

The Federal Emergency Management Agency [FEMA] was a resource reviewed to help with understanding the impacts of large storm events. The flood maps provided by FEMA detail the flooding that may occur during a 100 year or a 500 year storm with Odell Dam intact. This is information is useful in understanding where water will collect during a storm, but does not explicitly demonstrate the dam failing. See Appendix F for the FEMA flood maps. [6]

2.2 Past Dam Failures

Odell Dam was originally built with an earthen spillway located on the north end of the dam. In November of 1977, the owners of the dam began construction on a concrete spillway located at the south end of the dam. This construction was met with trouble in March of 1978 when the surrounding area received a rain storm that melted the snow cover. This massive flow of water undermined the spillway construction and caused the partially constructed spillway to pipe. Figure 3, shown on the right, displays an image during this failure.

Construction continued and the spillway was completed in July of 1978. The spillway was designed and

Figure 3: Previous Spillway Failure. Piping through the bottom of the Odell Dam's spillway, during construction. Photograph by ADWR.

built with flashboards to create a weir during times of low precipitation. In December of the same year, a large storm occurred, with the flashboards attached. The flashboards, having been attached, caused an impedance on the large flow. This impedance created large forces that ripped out the flashboards and caused a catastrophic failure of the spillway, completely ripping out the structure.

The spillway was then rebuilt sometime in 1980 and is still in use to this day. [3]

3. Testing and Analysis

3.1 Surveying

A survey of the dam was conducted to gather cross-sections of the dam geometry. This geometry is needed for side slope stability modeling.

Surveying was done using a total station and prism rod. To set up the total station, three points were taken on-site at the dam location, two of which had unknown elevations and a third of which had a known elevation and became the benchmark to tie all of the points into existing elevations. A total of 130 points were taken for the dam geometry and spillway dimensions. The total station was set up directly on the south end of the dam to shoot all of the points, then repositioned to a location 530 feet away to establish the benchmark and tie the points in. Figure 4 is a visual representation of the point data loaded into AutoCAD, rendering an elevation profile. The raw point data can be found in Appendix B.

3.2 Geotechnical Analysis

A geotechnical study was completed to understand how the soils in the watershed interact with rain events, such as 50 and 100 year storm events. The steps take to complete this analysis were collecting soil samples from the watershed, testing and analyzing soils in the lab, classifying the soils, and finally using RocScience to evaluate slope stability of the dam.

3.2.1 Soil Sampling

Before conducting a site visit to complete field work, the team prepared equipment for sampling. This equipment includes; a small handheld shovel, see through plastic bags with one gallon capacity, labels for bag, pens, and a bucket for carrying soil samples. A total of 7 soil samples were collected from random locations around the watershed. Each of these locations were taken from areas of different terrain type, but were representative of the surrounding areas, which varied from sample to sample. Before collecting the samples from each site, pictures were taken to establish a record of the terrain type, and the locations were noted on a map. See Appendix D for the locations of the soil samples collected.

3.2.2 Sieve Analysis

After all the soil samples were gathered, each sample was sieved in accordance with the methods provided by "*Soil Mechanics, Laboratory Manual 6th Ed., Das.*" [7] Table C- 1 in Appendix C lists the sieving results of each sample collected. Figure C-3 in Appendix C shows the plot generated by Table C- 1, which is used to classify the soil samples.

3.2.3 Soil Classification

The classification for each sample was determined using Figure E-1 in Appendix E which was adapted from ASTM D2487. In order to use the figure, the percentages of gravel, sand and clay within each sampled are required along with the values of D_{60} , D_{10} , D_{30} , C_u and C_c . D_{60} , D_{10} and D_{30} represent the particle sizes. D_{10} is the particle size that corresponds to 10% passing, in other words, 10% of the soil particles are finer than D_{10} , with D_{60} having 60% passing and D_{30} having 30% passing. Cu is the coefficient of uniformity and C_c is the coefficient of curvature. [8] The following equations relate the particle sizes to C_u and C_c :

$$C_u = \frac{D_{60}}{D_{10}}$$
Equation 1
$$C_c = \frac{D_{30}^2}{D_{10} * D_{60}}$$
Equation 2

Table C-2 in Appendix C, lists the values necessary for classifying the soil, as well as the soil classification.

3.2.4 RocScience – Slope Stability Modeling Software

RocScience's Slide is a program that was used to evaluate Odell Dam slope stability conditions. Slide is a 2D limit equilibrium slope stability program that was used for evaluating the factor of safety regarding failure by sliding of an embankment or slope for the dam. The program computes results in terms of factors of safety and slope circle radii and origins, as well as global stability failure could occur. For this project, the third cross sectional area was chosen out of the seven cross sections. Cross section three was chosen since it is the best representation of all the cross sections because of its characteristics.

Figure 5: Overview of all AutoCAD generated cross-sections.

Figure 5 above is the surveying data retrieved using a total station and the AutoCAD software. For the RocScience Slide program, the parameters needed were the cohesion of 130 psf, the friction angle of 25.1 degrees, the unsaturated unit weight is 106 pcf and the saturated unit weight is 120 pcf.

Figure 6: Results from a Heel to Toe Analysis

Figure 6, shown above, is a visual representation of the computed result from Slide showing various factors of safety (F.S.) which represent the stability of the soil. The square box above shows the minimum surface factor of safety when the results are calculated. The computation method used to determine the slip surfaces is the Bishop Method, which is designed for circular slip surfaces such as in cross section 3.

The Heel to Toe analysis means that the slopes will be analyzed using the highest elevation on the right which extends to the lower left elevation on the cross section. The water line is necessary to determine how the soils will react when pressurized under water load conditions. A F.S. higher than 1.5 is considered safe as a standard of practice. The F.S. for the minimum slip surface is 3.238.

Figure 7: Results from a Toe to Heel Analysis

The analysis was for Figure 7, shown above, was conducted under the same process as in the Heel to Toe cross section, the only difference within this analysis is that the cross section was analyzed from Toe to Heel. In this figure, for a downstream slope failure, the F.S. is 2.382.

[This space was intentionally left blank]

3.3 Hydrologic Analysis

A hydrologic analysis is being conducted to determine the adequacy of the spillway located on the southern side of Odell Dam. Due to the size of the watershed, the Rational Method is insufficient for determining the amount of water runoff generated, therefore the analysis will be conducted using the Soil Conservation Service (SCS) methods. This hydrologic analysis will include: a watershed delineation, rainfall intensities, curve numbers, time of concentrations, reservoir storage, and a PondPack hydrologic modeling software analysis.

3.3.1 Watershed Delineation

The watershed was delineated, by using an ArcGIS topographic map. This map was then imported into AutoCAD, where lines could be drawn to follow the contours that separate our watershed from others. The overall area of the watershed was approximated to 19.8 square miles. The watershed delineation can be found in Appendix G. The use of only one watershed was done to obtain a conservative estimation of the water runoff generated. The breakdown of the watershed into sub basins would produce a higher time of concentration, resulting in a lower peak flow. [9]

Figure 8: Odell Dam's Contributing Watershed.

3.3.2 Rainfall Intensities

Rainfall Intensities were found using National Oceanic and Atmospheric Administration (NOAA) Atlas 14. The intensities were established by inputting the exact coordinates of the project site into the database. Refer to Appendix H for the NOAA Atlas 14 rainfall intensities. [10]

3.3.3 Curve Numbers

The curve number considers multiple characteristics of the terrain within a given watershed, such as the soil group, land use, and treatment of the land. The value assigned to a curve number is indicative of the runoff coefficients of the land as well as the infiltration rate of the soil. Larger curve numbers result in more water runoff generated. Pre-burn and 80% post-burn, meaning 80% of the watershed has been burned, curve numbers were researched for this analysis.

For the pre-burned watershed analysis, Dr. Charles Schlinger provided documentation of the Oak Creek Flood Warning Study, which provided a full watershed analysis for the watershed contributing to Oak Creek. The study lists curve numbers for the Oak Creek watershed. Part of this large watershed was in close proximity to the Odell Lake watershed, therefore the values were used for this project, as deemed valid by the projects' Technical Advisor. The curve number to be used for the pre-burn scenario is 66. Appendix I shows the images used to obtain this curve number. [11]

Post-burn curve numbers require high precision and complex analysis to obtain, and for this reason a curve number was researched. The USDA Forest service provides many different curve numbers for post-burn conditions, ranging in value from 75-91. Due to this project using an 80% post-burn scenario and a conservative analysis, a curve number of 85 was chosen. [12]

3.3.4 Time of Concentration

The SCS Lag Time method was used to determine the time of concentration for both the pre-burn and 80% post-burn conditions. The Lag Time method requires that the watershed under analysis to be between 300-2000 acres. [13] The following is the SCS Lag Time equation:

$$t_c = \frac{1.67 * L^{0.8} (\frac{1000}{CN} - 10)^{0.7}}{1900 * S^{0.5}}$$

$$t_c = \text{time of concentration (hours)}$$

$$L = \text{length of longest flow path (feet)}$$

$$CN = \text{curve number}$$

$$S = \text{average watershed slope (%)}$$

Table 1 summarizes the values needed to determine the time of concentrations as well as the values derived.

Scenario	Length (feet)	Slope (%)	CN	Tc (hours)
Pre-Burn	63212	13.18	66	.819
80% Post-Burn	63212	13.18	85	.563

Table 1: Time of Concentrations.

3.3.5 Reservoir Storage

The size and shape of the reservoir is needed to determine the storage capacity as a function of the water level elevation. ADWR has provided documentation for the storage of Odell Lake. The storage indication curve has been calculated from the crest of the spillway to the top of the dam, meaning that the analysis will completed for a full reservoir. [14] During multiple site visits to the project location it was noted that the reservoir was as full as the crest of the spillway Figure 9 listed below is the reservoir storage indication curve.

Figure 9: Reservoir Storage Indication Curve.

3.3.6 Bentley PondPack – Hydrologic Modeling Software

Bentley PondPack has been used to establish the amount of water runoff generated within the watershed that contributes to the Odell Dam, as well as determining the peak flows through the spillway for various storm events. Figure 10 shows an image of the model made within PondPack. The runoff generated within the Watershed travels to Odell Lake, which then routes the water through the Pond Outlet Exit (POE-1) and finally out of the Spillway and Outlet (O-1). For the model to run properly, the software needs time depth tables, area of watershed, time of concentrations, and curve numbers.

Figure 10: Bentley PondPack Model

NOAA Atlas 14 provided data that was used to make the time depth tables needed within PondPack, but the model required data that had to be linearly interpolated due to gaps in the data. PondPack requires time depth tables that have data for a specific increment of time. This analysis used 30 minute intervals for a duration of six hours, whereas NOAA only provided data for 30 minute, 1 hour, 2 hour, 3 hour, and 6 hour duration depths. Six hours is a standard storm duration used by ADWR when analyzing spillway capacity. Tables J-1 and K-1, found in Appendix J and K, show the time depth tables generated using the NOAA Atlas 14 and the curves generated within PondPack.

The watershed area, time of concentrations, and curve numbers derived are summarized in the following table. These numbers along with the storage indication curve are the specific parameters

PondPack Parameter	Pre-Burn	80% Post-Burn
Watershed Area (acres)	12,669.640	12,669.640
Time of Concentration (hours)	0.819	0.563
Curve Numbers	66	85

needed for the PondPack model to run its analysis. Table 2 shows the parameters of the PondPack

Table 2: PondPack Parameters.

software.

Table 3, shown below, lists the peak inflows generated from the watershed, the peak outflows through the spillway, and whether the spillway is adequate for that specific storm event. Figures L-1 to L-8 in Appendix L. show the hydrographs generated in PondPack for the runoff generated from the watershed.

	Pi	re-burn Conditi	Post-burn Conditions			
Storm Events	Peak Inflow (cfs)	Peak Outflow (cfs)	Spillway Adequate?	Peak Inflow (cfs)	Peak Outflow (cfs)	Spillway Adequate?
2 Year	281.07	204.73	Yes	3443.26	1519.19	Yes
5 Year	538.79	411.23	Yes	6900.47	3167.07	Yes
25 Year	2914.50	1457.56	Yes	15484.56	N/A*	No
50 Year	4530.26	2401.13	Yes	19860.76	N/A*	No
100 Year	6617.25	3614.45	Yes	24891.91	N/A*	No
200 Year	9073.63	N/A*	No	30404.36	N/A*	No
500 Year	13164.09	N/A*	No	38575.88	N/A*	No
1000 Year	17056.60	N/A*	No	45669.15	N/A*	No

Table 3: PondPack Inflow and Outflow

- *Spillway capacity ~ 4500 cfs. After spillway capacity is reached, PondPack will not give outflow data.

4. Final Results

4.1 RocScience Slide Modeling

A geotechnical model of an Odell Dam cross-section was created within Slide to show the F.S. for the minimum side slope slip surface. The Heel to Toe analysis resulted in a F.S. of 3.238, whereas the Toe to Heel analysis lead to a F.S. of 2.382. The Toe to Heel analysis shows that the F.S. of 2.382 is the limiting value, however, it is larger than 1.5 and therefore safe.

4.2 Bentley PondPack Modeling

A hydrologic model of Odell Lake, Odell Dam, and the surrounding watershed was created to determine the flows generated during various storm events as well as the watershed during pre-burn and 80% post-burn conditions.

The pre-burned watershed model resulted in the spillway capacity being reached between the 100-200 year storm events and between the 5-25 year storm events for the 80% post-burn model.

The PondPack model will not give outflow results once the spillway capacity has been reached, subsequently the software displays warning messages noting that the inflow is greater than the outflow.

4.3 Post-burn Discussion

Given Northern Arizona's terrain and vegetation, post burn hydrologic studies become necessary when analyzing larger watersheds.

A post-burned watershed drastically reduces the time of concentration, which in-turn increases the water runoff generated exponentially. This has the probable effect of creating detrimental damage to areas located downstream of the dam.

Another adverse effect would be the accumulation of debris from the burned vegetation. The debris collecting and making its way to the reservoir decreases its storage capacity as well as increasing the weight of the homogenous water mixture. The added debris will result in higher stresses on the dam as well as creating blockages in the spillway.

4.4 Final Recommendations

It is encouraged that Pinewood Country Club, look into previous ADWR recommendations to preform basic maintenance on the dam. This maintenance includes but is not limited to rodent holes, dense vegetation, cracks within the training wall and spillway, and debris within outlet of the spillway.

Our analysis also shows that the dam's spillway cannot hold the minimum incoming design flood required by ADWR. Our analysis shows that the spillway will be inadequate between the 100 and 200 year storm event for pre-burn conditions. The team suggest that the spillway should be re-examined, at the cost of Pinewood Country Club.

These conditions dramatically change once 80% post-burn conditions were examined, to which the dam's spillway indicated inadequate between 5 and 25 year storm event.

5. <u>Summary of Project Cost</u>

5.1 Post Cost Analysis

The overall cost for this project was calculated after the total hours for the project was established. Table 4 lists the total hours per team member per task is established. The total amount of time spent conducting this project were 510 hours.

Task Hours		Task							
Team Member	Management	Lit. Review	Surveying	Geotech.	Hydrologic	RocScience	PondPack	Reporting	Total
Braedan	25	15	10	8	20	0	20	32	130
Chandler	13	15	10	6	6	0	40	30	120
Sharlot	17	32	5	6	0	0	0	20	80
Ibrahim	13	12	5	20	0	30	0	20	100
Yaowan	13	12	5	20	0	10	0	20	80

Table 4: Final Summary of Project Hours.

Table 5 lists the overall hours and cost that were needed for completion of the Odell Safety Analysis. The project cost was broken down to the hours spent in each task at a billable rate of \$75/hour. The final cost for this project was \$38,250.

				Cos	t				
Task	Management	Lit. Review	Surveying	Geotech.	Hydrologic	RocScience	PondPack	Reporting	Total
Total Hours	81	86	35	60	26	40	60	122	510
Total Cost (\$)	6075	6450	2625	4500	1950	3000	4500	9150	38250

Table 5: Overall Final Cost of Analysis.

The final cost differs were under budget by \$41,850 from the cost estimated in the project proposal. This is due to the project hour's estimation being higher than that of the actual amount of hours it took to complete the project. The billable rate also changed, as one rate was used through the project instead of three different rates. Table 6 is listed below to show a comparison of the preliminary estimated costs of the project.

Cost									
Task	Management	Lit. Review	Surveying	Geotech.	Hydrologic	RocScience	PondPack	Reporting	Total
Total Hours	100	40	160	100	100	100	120	150	870
Total Cost (\$)	0	3888	15552	10800	10800	10440	12960	15660	80100

Table 6: Proposal Estimated Cost of Analysis.

5.2 Project Schedule

The Final Gantt Chart can be viewed in Appendix M, while the Proposal Gantt Chart can be seen within Appendix N. The differences between the Proposal Gantt Chart and Final Gantt Chart are mostly due to deadlines having been change because the literature review was not fully completed within the first semester, and time conflicts occurred due to scheduling mistakes.

Addendums for Final Gant Chart:

The State of the Art Research task was renamed Literature Review.

Addition of RocScience Slide Modeling task.

Geotechnical Analysis task was revised to Geotechnical Sampling.

Dam Failure Analysis task was removed.

Hydrologic Modeling task was renamed PondPack Modeling.

6. <u>References</u>

- [1] "Odell Dam, Munds Park, Arizona." Map. *Google Maps*. Google, 14 October 2014. Web. 14 October, 2014
- [2] ADWR Multiple Sources. "Correspondence May 78 March 83." *Arizona Department of Water Resources*. N.d.
- [3] B.G. Scott. "Analytical Report on Spillway Failure." *Arizona Department of Water Resources*. 1 February, 1980.
- [4] Waleed Aboshanp (personal communication via Charles Schlinger, 3 October, 2014)
- [5] ADWR Multiple Sources. "Correspondence June 86 March 07." *Arizona Department of Water Resources*. N.d.
- [6] National Flood Insurance Program: Flood Hazard Mapping. FEMA.gov. 10 October, 2014
- Braja M. Das. "Soil Mechanics, Laboratory Manual 6th Ed." Oxford University Press. Oxford, New York. 2002
- [8] Donald P. Coduto. "Geotechnical Engineering, Principles and Practices 2nd Ed." *PHI Learning Private Limited*. New Delhi, India. 2011
- [9] "PFDS: Contiguous US." *PFDS: Contiguous US.* N.p. 27 August, 2014. Web. 16 Oct. 2014.
- [10] ESRI (Environmental Systems Resource Institute). 2009. ArcMap 9.2. ESRI, Redlands, California.
- [11] ADWR Engineering Division Flood Management Section. "Oak Creek Flood Warning System Hydrology Report." *Arizona Department of Water Resources*. September, 19.
- [12] "RMRS BAER Road Treatment Tools Curve Number Methods Supplement." RMRS BAER Road Treatment Tools - Curve Number Methods Supplement. N.p., n.d. Web. 15 Nov. 2014.
- [13] Larry W. Mays. "Water Resources Engineering 1st Ed." *John Wiley & Sons, Inc. New York, USA.* 2001
- [14] ADWR Multiple Sources. "Correspondence June 86 March 07." *Arizona Department of Water Resources*. N.d.

7. <u>Appendices</u>

23
24
25
29
35
47
- - - -

Appendix A – ADWR Doc. Inventory	Table A-1
CENE 486C – Engineering Design Capstone	Source: ADWR
Odell Dam Safety Analysis	Date Created: 10-1-14

Document Number	Document Name	Date	Ву
34701	3-47 Failure Report	3/18/1980	B.G.Scott
34702	Analytical Report on Spillway Failure	2/1/1980	B.G.Scott
34703	Application of Repair	11/24/1982	ADWR
34704	Bekaert Gabions Manufacturer	N/A	Beraert Gabions
34705	Correspondance June86 - March07	-	ADWR Multiple Sources
34706	Correspondance May 78 - March 83	-	ADWR Multiple Sources
34707	Correspondance Oct 71 - Nov 06	-	ADWR Multiple Sources
34708	HASP Inflow Hydrograph	9/15/1976	-
34709	Investigation of Subsoils Odell Dam	12/23/1981	Fox Consulting Engineers and Geologist
34710	Monitor Project Fact Sheet	10/8/1981	Joseph E.Costa
34711	Odell Spillway Changes	10/10/1979	-
34712	Repair for Pinewood Development	2/11/1981	Jason M Burgess, ADWR
34713	Summary Table Hydrographs	9/18/1976	-
34714	T8110-1388-A	1/7/1976	-
34715	T8110-5933-A	12/17/1975	-
34716	T8110-8290-A	12/29/1975	-
34717	Unathorized Post Failure Construction	3/1/1982	K.M. Hussain
34718	WC - Bill - Hydrology	2/22/1973	-

Table A-1 lists the document inventory for all reference materials provided by Arizona Department of Water Resources.

*Documents are available upon request.

Appendix B- Surveying Raw Point Data								Tał	Table B-1					
CENE 486C – Engineering Design Capstone								Sou	Source: Chandler, Braedan					
Ode	ll Dam	Safety	Analy:	sis					Dat	te Cre	ated: 9-	-28-14		
1	-102.148	177.115	-0.318	SS	44	-191.176	320.027	0.302	SS	87	82.549	-44.225	-17.732	SS
2	-35.778	-20.747	-7.392	SS	45	-185.336	323.306	0.322	SS	88	100.686	-75.297	-18.460	SS
3	-62.415	20.674	-7.503	SS	46	-146.716	262.043	0.115	SS	89	107.660	-83.225	-16.682	SS
4	-93.736	86.301	-7.559	SS	47	-141.873	264.876	-1.018	SS	90	114.453	-102.543	-3.883	SS
5	-119.026	134.875	-7.452	SS	48	-116.044	207.289	-0.314	SS	91	100.042	-108.577	-3.438	SS
6	-150.957	190.838	-7.443	SS	49	-86.052	155.292	-0.344	SS	92	75.560	-129.943	-4.416	SS
7	-181.037	239.876	-7.566	SS	50	-59.034	111.473	-0.335	SS	93	70.401	-119.253	-8.402	SS
8	-181.013	239.844	-7.558	SS	51	-34.772	69.082	-0.278	SS	94	84.064	-101.367	-13.080	SS
9	-229.306	281.458	-7.514	SS	52	-11.718	29.799	-0.092	SS	95	70.867	-83.829	-13.164	SS
10	-201.016	313.101	-2.051	SS	53	-11.782	30.203	-0.040	SS	96	57.082	-94.768	-8.500	SS
11	-163.624	255.986	-2.211	SS	54	-2.015	10.140	-0.161	SS	97	75.527	-130.574	-2.220	SS
12	-132.676	203.045	-2.327	SS	55	40.060	26.807	-14.823	SS	98	69.750	-132.328	-2.080	SS
13	-95.693	145.122	-1.654	TR	56	15.616	69.644	-16.574	SS	99	54.344	-130.576	-2.711	SS
14	-70.203	95.950	-2.659	SS	57	-6.464	105.433	-16.649	SS	100	40.760	-129.429	-3.439	SS
15	-37.541	37.280	-1.145	SS	58	-24.735	92.860	-9.807	SS	101	9.987	7.087	-3.616	SS
16	-18.064	-10.886	-2.795	SS	59	-40.285	132.842	-10.294	SS	102	18.954	8.633	-3.942	SS
17	-9.219	-6.746	-1.452	SS	60	-18.670	146.246	-17.736	SS	103	25.115	9.684	-4.299	SS
18	-9.009	-6.763	0.925	SS	61	-43.054	188.228	-18.120	SS	104	29.218	10.009	-5.141	SS
19	-7.896	-6.344	0.512	SS	62	-69.040	229.293	-17.751	SS	105	7.296	12.266	-4.381	SS
20	-13.248	1.521	-0.317	SS	63	-91.596	266.774	-18.975	SS	106	3.663	16.548	-4.739	SS
21	-8.078	-6.489	0.928	SS	64	-120.240	308.126	-11.028	SS	107	-5.223	18.175	-5.422	SS
22	-13.595	1.685	0.789	SS	65	-113.125	280.420	-14.362	SS	108	-9.106	17.513	-6.040	SS
23	-13.655	1.692	0.792	SS	66	383.656	361.423	-18.790	SS	109	-18.611	15.906	-8.440	SS
24	-14.256	1.127	0.777	SS	67	386.892	364.524	-18.826	SS	110	-31.667	15.236	-11.800	SS
25	-14.270	1.037	-0.931	SS	68	132.450	230.822	-18.097	SS	111	-41.537	13.826	-13.794	SS
26	-14.009	1.589	-0.733	SS	69	1.067	-15.503	0.136	SS	112	-38.057	145.105	-5.322	SS
27	-9.421	-4.256	0.253	SS	70	1.131	-15.631	1.702	SS	113	-27.614	142.473	-5.707	SS
28	-9.235	-4.404	1.029	SS	71	0.835	-16.338	2.026	SS	114	-17.727	138.586	-6.028	SS
29	-10.116	-4.841	1.040	SS	72	9.312	-15.245	-1.383	SS	115	-7.784	135.274	-6.587	SS
30	-10.407	-4.859	-1.726	SS	73	9.193	-15.312	-0.118	SS	116	-5.186	129.944	-6.831	SS
31	-8.337	-8.220	-1.437	SS	74	9.700	-15.870	-0.089	SS	117	0.870	108.194	-6.700	SS
32	-8.136	-8.136	0.914	SS	75	12.631	-13.655	-2.549	SS	118	8.830	78.574	-6.673	SS
33	-7.421	-7.744	0.890	SS	76	12.696	-13.804	-1.532	SS	119	3.269	56.541	-6.787	SS
34	-7.299	-7.617	0.514	SS	77	13.022	-14.531	-1.595	SS	120	-2.693	37.784	-6.740	SS
35	-6.778	-8.641	0.666	SS	78	21.700	-9.738	-5.408	SS	121	17.169	29.274	-6.696	SS
36	-6.681	-8.518	2.490	SS	79	21.901	-9.813	-4.690	SS	122	28.708	26.805	-6.661	SS
37	-7.484	-9.091	2.818	55	80	22.170	-10.602	-4.668	SS	123	-6.769	26.318	-6.123	SS
38	-7.219	8.744	-0.147	SS	81	34.212	-5.737	-9.208	SS	124	-18.250	58.836	-5.964	SS
39	-30.498	49.827	0.242	SS	82	34.209	-5.942	-8.850	SS	125	-25.787	92.133	-5.455	SS
40	-54.964	92.060	-0.092	SS	83	34.580	-6.539	-8.861	SS	126	-467.344	-250.614	-18.426	SS
41	-86.873	147.963	-0.171	55	84	43.489	-2.001	-12.194	SS	127	-275.709	-85.088	0.358	SS
42	-121.894	208.064	-0.150	SS	85	43.525	-2.929	-12.100	SS	128	129.872	233.522	-18.441	SS
43	-150.187	256.298	-0.201	SS	86	68.108	-13.520	-16.934	SS	I				

Table B-1 lists the raw surveying point data generated by the Total Station System.

<u> Appendix C – Sieve Analysis Results</u>	Table C-1		
CENE 486C – Engineering Design Capstone	Source: Yaowan Ma		
Odell Dam Safety Analysis	Date Created: 10-1-2014		

Sieve	Sample A	Sample B	Sample C	Sample D	Sample E	Sample F	Sample G
Sieve	Percent						
Opening	Finer						
(mm)	100-ΣRn						
4.75	77.59	80.28	93.05	82.64	71.28	85.23	66.62
2	48.04	63.58	82.79	70.97	54.14	64.03	54.33
0.841	23.35	46.9	65.1	59.39	38.67	32.72	43.28
0.4	12.55	37.82	48.91	46.51	27.27	16.12	34.41
0.25	7.62	31.27	36.84	35.9	20.67	9.41	28.24
0.177	5.65	27.6	31.55	30.13	17.74	7.22	24.81
0.105	3.62	21.93	24.23	21.73	14.46	5	20.11
0.074	2.5	16.9	9.11	15.86	7.72	4	8.89
0.01	-0.21	0.13	1.41	0.27	0.33	-0.47	-1

Table C-7: Sieve Analysis Results

<u>Appendix C – Sieve Analysis Results</u>	Table C-2		
CENE 486C – Engineering Design Capstone	Source: Yaowan Ma		
Odell Dam Safety Analysis	Date Created: 10-1-2014		

Sample	Gravel	Sand	Clay	D60 (mm)	D10 (mm)	D30 (mm)	Cu	Cc	Classification
Α	22.41%	75.09%	2.71%	2.9	0.35	1.2	8.3	1.42	Well-graded sand with gravel
В	19.72%	63.38%	16.77%	1.8	0.035	0.2	51.4	0.635	Cinder
С	6.95%	83.94%	7.70%	х	х	х	х	х	Clayey sand
D	17.36%	66.78%	15.59%	0.9	0.035	0.18	25.7	1.03	Well-graded sand with clay & gravel
E	28.72%	63.57%	7.39%	2.7	0.09	0.5	30	1.03	Well-graded sand with clay & gravel
F	14.77%	81.23%	4.47%	1.8	0.25	0.75	7.2	1.25	Well-graded sand
G	33.38%	57.73%	9.89%	3	0.075	0.282	40	0.353	Poorly-graded sand with silt

Table C-8: Soil Classification Calculated Values.

<u> Appendix C – Sieve Analysis Results</u>	Figure C-3		
CENE 486C – Engineering Design Capstone	Source: Ibrahim Atout		
Odell Dam Safety Analysis	Date Created: 10-1-2014		

Figure C-3: Graphical Representation of Table 1.

Figure D-1 illustrates the approximate locations of the soil samples collected.

Figure E-1 is a flow chart for the classification of coarse-grained soils. Adapted from ASTM D2487.

NOTES TO USERS

This map is for use in administering the National Flood Insurance Program. It does not necessarily identify all areas subject to flooding, particularly from local drainage sources of small size. The community map repository should be consulted for possible updated or additional flood hazard information.

consulted for possible updated or additional flood hazard information. To obtain more detailed information in areas where Base Flood Elevations (b) Field and or flood ways have been determined, users are encouraged to consult the Field and the same have been determined, users are encouraged to consult the Field and the same have been determined. Users are encouraged by the Field the same have been determined with the Field represent rounded whole-foot elevations. These BFEs are intended for flood insurance raing purposes only and should not be used as the sole source of flood elevation information. Accordingly, flood elevation data presented in the FIS report should be utilized in conjunction with the FIRM or purposes of construction and/or floodplain management.

Constantial and indexpant immegnities. Coastal Base Flood Elevations shown on this map apply only landward of 0.0 Norh American Vertical Datum of 1986 [NAVD 88]. Users of this FIRM should be avere that coastal flood elevations are also provided in the Summary of Stithware Elevations table in the Flood Insurance Study report for this should be user of the construction and/of foodglaim management purposes when they are higher than the elevations shown on this FIRM.

Boundaries of the floodways were computed at cross sections and interpolated between cross sections. The floodways were based on hydraulic considerations with egard to requirements of the National Flood Insurance Program. Floodway widths and other pertinent floodway data are provided in the Flood Insurance Study report for this juridiction.

Certain areas not in Special Flood Hazard Areas may be protected by flood control structures. Refer to Section 2.4 "Flood Protection Measures" of the Flood Insurance Study report for information on flood control structures for this

The projection used in the preparation of this map was Universal Transverse Mercator (UTM) Zone 12N. The horizontal datum was NAD 83. GR580. Differences in datum, spheroting royection or UTM zones used in the production of RRMs for adjacent jurisdictions may result in slight positional differences in map features across jurisdiction boundaries. These differences do not affect the accuracy of this FIRM.

Plood elevations on this map are referenced to the North American Vertical Datum of 1988. These flood elevations must be compared to structure and ground elevations referenced to the same varifical **datum**. For information regarding conversion between the National Geodetic Vertical Datum of 1929 and the North American Vertical Datum of 1966, visit the National Geodetic Burvey at the following address:

Sali vay at the Kit/Ming add tess. NGS I nformation Services NDAA, NINGS12 National Geodetic Survey SSMC-3. #92012 1315 East-West Highway Silver Spring, Maryland 20910-3282 (301) 713-3242

To obtain current elevation, description, and/or location information for bench marks shown on this map, please contact the Information Services Branch of the National Godelic Survey at (301) 713-3242, or visit its webste at <u>http://www.ngs.nosa.gov</u>. Base map information shown on this FIRM was derived from U.S. Geological Survey Digita Orthophot Quadrangies produced at a scale of 1:12,000 from photography deted 1992 or later.

This may reflect more detailed and up-to-date stream channel configurations than those shown on the previous FIRM for this jurisdiction. The floodplains and floodways that were transferred from the previous FIRM may have been adjusted to conform to these new stream channel configurations. As a result, the Flood Profiles and Floodway Data tables in the Flood insurance Study Report (which contains authoritother hydraulic data) may reflect stream channel distances that differ from what is shown on this map.

Corporate limits shown on this map are based on the best data available at the time of publication. Because changes due to annexations or de-annexations may have occurred after this may was published, may users should contact appropriate community officials to verify current corporate limit locations.

Please refer to the separately printed Map Index for an overview map of the county showing the layout of map panels: community map repostory addresses; and a Listing of Communities table contraining National Flood Insurance Program dees for each community as well as a listing of the panels on which each community is located.

If you have **questions about this map** or questions concerning the National Flood Insurance Program in general, please call **1-877-FEMA MAP** (1-877-336-2627) or visit the FEMA website at <u>http://www.fema.gov</u>.

	LEGEND			
SPEI BY T	TAL FLOOD HAZARD AREAS SUBJECT TO INUNDATION			
The 1% annual flood (10 chance of being equaled area subject to fooding 1 Zones A, AE, AH, AD, A devition of the 1% annua	The Print Marke E United to Extend food, is the flood that has a 1% or exceeded in any given year. The Sacal Rood Handrid Area is the the 1% small durine Mouth. Area of Sacal Rood Handrid India (Sacal Rood Handrid India) R, 499 V, and VE. The Base Rood Evolution is the water-surface information (Sacal Rood Evolution) is the water information (Sacal Rood Evolution) is the water informa			
ZONEA No ZONEAE Ba	Base Rood Elevations differmined.			
ZONE AH FIG Ele	ad depths of 1 to 3 feet (usually areas of ponding); Rase Road works dataminist.			
ZONE AO Flo dej dej	od dogto 2 / 1 uo 3 feet (acally sheet flow or doging tenaity, nerage the observatived for areas of allows fee flooding, velocities also eminance.			3-10
ZONE AR Sp flo int pr	Each Findel Naard Area Tomining protection from the 1% annual d'antice bl og A filod control signed in the was alkalanceaning Adventing Zone RA Rates that the former fload control system is being readored to provide decontrol that 5% of manual chronic or graves finder.		[A	€-6
ZONE A99 Art pro det ZONE V Co	a to be protocian (moi 1% annual chance flood by a Federal flood tector system under construction; no Bese Flood Elevators emmes. Mai flood annu with velocity haard (vave attion): no Base Flood	_	EN	ted:
ZONE VE CO	vations determined.	Ë.	ш	c.a
ZONE VE CO	actor incom determined.	e	e.	Ū
FLO The floodway is the charm of encroadhment so that t in food heights.	DWAY AREAS IN ZONE AE the two multi-array adjacent flootpin a rease that, must be kept free he two annual circuits cannot without subdarbit invokasis FR FLOOD AREAS	Figur	Sourc	Date
ZONEX Arc ave 1s	ss of 0.2% annual: chance flood; areas of 1% annual chance flood with nage (reghts of less than 1 foot or with drainloge areas less than tare mills para areas protected by leves from 1% a natural kincerfood.	_	• •	
	ER AREAS			
ZONE D AR	as in which flood herends are undetermined, but possible.			
COA COA	STAL BARRIER RESOURCES SYSTEM (CBRS) AREAS FRWISE PROTECTED AREAS (OPAs)			
CBRS areas and OPAs are	normally located within or adjacent to Special Flood Hazard Areas.			
	1% annual chanze floodplain boundary 0.2% annual chanze floodplain boundary			
	Ploodwayboundary			
	Zona D boundary CBRS and CPA boundary			
10000000000	Boundary dividing Special Road Hanard Area Zones and → Toundary dividing Special Road Hanard Areas of afferent Base Road Exelution, fload outputs on root students.	SOLE	one	
	Umit of Moderate Weve Action	Ţ	ost	
(EL 987)	Base Flood Elevation in Falls Value, devation in Falls Base Flood Elevation value where uniform within zone, elevation in feet		al	
* Referenced to the North	American Vartical Datum of 1988 Cross section line	ŏ	u U	
(a)(a)	Transectine	lo	sig	
07 07 43 , 32 22 30	Debun of 1933 (N4D 23), Wetern Henrighere 1000-rever University Andrews 1000-reverse University Transverse Merstern not valuer time.	Γ ι) e	
600000 FT	NoD 1983 UTH Zone 12 5000-foot and values: Anzona Soze Plane roordinate system,	\blacksquare		s
	Central zone (FIPSZONE 0202), Transverse Mercalor projection	Z	in	ysi
DX5510 × M1.5	ERM parts FRM parts River Mie	Ē	leei	nal
R	MAP REPOSITORY der to listing of Map Repositiones on Map Index	H	gir	A
	EFFECTIVE DATE OF COUNTYWIDE FLOOD INSURANCE RATE MAP Soptimies 1, 2010	ا تت	En	fety
EFFE	STIVE DATE(S) OF REVISIONS; TO THIS PANEL	X		Saf
For community map revi Map History table locates	ion history prior to countywide mapping, refer to the Community I in the Road Insurance Study report for this jurkdiction.	di	360	Ш
To determine if flood in agent or call the National	surance is available in this community, contact your Insurance blod Insurance Program at 1-800-638-6623.	en	E 48	Da
	MAP SCALE 1" = 1000'	App	CEN	Ddell
500 T	0 1000 2000 I I FEET	, I		0
300	e 300 600			
ÍNF	PANEL 7460G			
WIW				
	COCONINO COUNTY, ARIZONA			
ē	AND INCORPORATED AREAS			
	PANEL 7460 OF 8475			
	CONTAINS:			
	COMMUNITY MUMBER PANEL SUFFIX COCOMPORCE_NTY OKOPN 7400 C			
	Netice to User: The Map Number shown below should be used when placing map orders; the Community Number			
	sident community.			
	MAP NUMBER 04005C7460G			
	EFFECTIVE DATE			
	GEFTEMOER 3, 2010	D		
		Page	30 (of 48

NOTES TO USERS

This map is for use in administering the National Flood Insurance Program. It does not necessarily identify all areas subject to flooding, particularly from local drainage sources of small size. The community map repository should be consulted for possible updated or additional flood hazard information.

Consulted for possible updated of additional flood hazard information. To obtain more detailed information in areas where Base Flood Elevations (BFEs) and/or Boodways have been determined, users are encouraged to consult the Flood Profiles and Floodway Data and/or Summary of Sillivater Elevations tables contained within the Flood Insurance Study (FIS) report that accompanies this FIRM. Users should be aware that BFEs shown on the FIRM represent rounded whole-loot elevations. These BFEs are intended for flood insurance rating purposes only and should not be used as the sole source of flood elevation information. Accordingly, flood elevation data presented in the FIS report should be utilized in conjunction with the FIRM for purposes of construction and/or floodpin management. **Coastal Base Flood Elevations** shown on this map apply only landward of 0.0 North American. Vertical Datum of 1986 (NAVD 88). Users of this FIRM should be aware that coastal flood elevations area also provided in the Simmary of Stativater Elevations shown in the Simmary of Sillwater Elevations table should be aware that coastal flood elevations area also provided in the Simmary of Stativater for costal management. Should be aware that coastal flood elevations area for provided in the Simmary of Sillwater Elevations shown in the Simmary of Sillwater Elevations table should be aware that coastal flood elevations area for costated the should be aware that coastal flood elevations area for the provided in the should be aware that coastal flood elevations area for the provided in the should be aware that coastal flood elevations area for the provided in the Sillwater elevation Sillwater Elevations table should be aware that coastal flood elevations area for the provided in the same should be aware that coastal flood elevations area for costated the Sillwater Elevations table should be aware that one elevations shown on this FIRM.

Boundaries of the **floodways** were computed at cross sections and interpolated between cross sections. The floodways were based on hydraulic considerations with regard to requirements of the National Flood Insurance Program. Floodway widths and other pertinent floodway data are provided in the Flood Insurance Study report for this junkatichon.

Certain areas not in Special Flood Hazard Areas may be protected by flood control structures. Refer to Section 2.4 "Flood Protection Measures" of the Flood Insurance Study report for information on flood control structures for this

The projection used in the preparation of this map was Universal Transverse Mercator (UTM) Zone 1241. The horizontal darum was NAD 83, GRS80. Differences in datum, spheroid, projection or UTM zones used in the production of FRMs for adjacent junisdictions may result in sight positional differences in map features across production bundaries. These differences do not affect the accuracy of this FFM.

Flood elevations on this map are referenced to the North American Vertical Datum of 1998. These flood elevations must be compared to structure and ground elevations referenced to the same vertical datum. For information regarding conversion between the National Geodetic Vertical Datum of 1920 and the North American Vertical Datum of 1980, with the National Geodetic Survey website at <u>http://www.ngs.noa.gov</u> or contact the National Geodetic Survey at he following address:

NGS Information Services NOAA, NNG512 National Geodetic Survey SSMC-3, #9202 1315 East-West Highway Silver Spring, Maryland 20910-3282 (301) 713-3242

To obtain current elevation, description, and/or bcation information for beanch marks shown on this map, please contact the information Services Branch of the National Goodetic Survey at (301) 713-3242, or visit is webste at http://www.ngs.noaa.ov.

Base map information shown on this FIRM was derived from U.S. Geological Survey Digital Orthophoto Quadrangles produced at a scale of 1:12,000 from photography dated 1992 or later.

This map reflects more detailed and up-to-date stream channel configurations than those shown on the previous FIRM for this jurisdiction. The floodpains and floodways that were transferred from the previous FIRM may have been adjusted to conform to these new stream channel configurations. As a result, the optical strength of the stream of the stream channel configurations of the provide contains authoritable by dynamic and an and the stream channel distances that differ from what is shown on this map.

Corporate limits shown on this map are based on the best data available at the fine of publication. Because changes due to annexations or de-annexations may have accured after this map was published, map users should contact appropriate community officials to verify current corporate limit locations.

Please refer to the separately printed **Map Index** for an overview map of the county showing the layout of map panels; community map repository addresses; and a Listing of Communities table; contraining National Flood insurance Program dates for each community as well as a listing of the panels on which each community is based.

Contact the FEMA Map Service Center at 1-800-358-9616 for information on available products associated with this FIRM. Available products may include pervicusly issued Letters of Map Change, a Flood Insurance Sudy report, and/or diptal versions of this map. The FEMA Map Service Center may also be eached by Faux 1400-359 SPC3 and fs webbias at <u>this Verwitemas quarts</u> and the submitted of the service and the version at the <u>this vervicema quarts</u> and the service and the version at the <u>vervicema quarts</u> and the service at the <u>this vervicema quarts</u> and this vervicema

If you have **questions about this map** or questions concerning the Nationa Flood Insurance Program in general, please call **1-877-FEMA MAP** (1-877-336-2627) or visit the FEMA website at <u>http://www.fema.gov</u>.

	LEGEND		
100	SPECIAL FLOOD HAZARD AREAS SUBJECT TO INUNDATION BY THE 1% ANNUAL CHANCE FLOOD		
The 1% annual chance of being	flood (100-year flood), also known as the base flood, is the flood trat has a 1% a equaled or exceeded in einer year. The Special Flood Historii Area is the		
area subject to Zones A, AE, A devation of the	flooding by the 7% annual charce flood. Areas of Special Plood Hazard include AH, AO, AR, AB, V, and VE. The Base Flood Elevation is the water-surface 1% annual charce flood.		
ZONE A	No Base Rood Blevations determined.		
ZONE AL	Base Flood Develops determined. Flood depths of 1 to 3 feet (usually areas of ponding); Base Flood		
ZONE AO	Elevatures occermined. Flood depths of 1 to 3 feet (usually sheet flow on sloping terrain); average dents determined. For averaging alludad fan flood on vendties alon		
ZONE AR	determined. Special Flood Hazard Area formerly protected from the 1% annual chance		
	flood by a flood control system that was subsequently decertified. Zone AR indicates that the former flood control system is being restored to provide protection from the 3% annual dhare or greater flood.		
ZONE A99	Area to be protected from 1% annual chance flood by a Federal flood protection system under construction; no Base Flood Elevations		Z
ZONEV	determined. Coasial flood zone with velocity hazard (wave action); no Base Flood	12	뛷
ZONE VE	Elevations determined. Coastal flood zone with velocity hazarci (wave action); Base Flood Elevations deturmined	ц	
1///	FLOODWAY AREAS IN ZONE AE	Ite	S
The floodway is of encroachment in flood beights.	the channel of a stream plus any adjecent floodplain areas that must be kept free it so that the 1% annual chance flood can be carried without substantial increases	l ug	I I
	OTHER FLOOD AREAS	迕	Ň
ZONE X	Areas of 0.2% annual chance flood; areas of 1% annual chance flood with average depths of less than 1 foot or with drainage areas less than 1 square mile; and areas protected by levees from 1% annual chance flood.		
	OTHER AREAS		
ZONE X ZONE D	Areas determined to be outside the 0.2% annual chance Roodplain. Areas in which flood hazands are undetermined, but possible.		
	COASTAL BARRIER RESOURCES SYSTEM (CBRS) AREAS		
CBRS areas and	OTHERWISE PROTECTED AREAS (OPAs)		
and a second life	1% annual charce floodplain boundary		
	0.2% annual chance floocplain boundary Floodway boundary		
	Zone D boundary		
	LBRS and OPA boundary Boundary dividing Special Flood Hazard Area Zones and	S	le l
	Flood Elevations, flood cepths or flood velocities.	a	Β
~~~ 513	Base Rood Elevation line and value: elevation in feet*		pst
(EL 987	<li>Base Flood Elevation value where uniform within zone; elevation in feet*</li>		G
* Referenced to	othe North American Vertical Datum of 1988  Cross section line	0	u u
<u> </u>		lo	.50 21.
87*07'45*, 32	2"22"30" Geographic coordinates referenced to the inorth American Datum of 1963 (NAD 83), Western Hemisphere		l si
600000	N 1005-meter (merces) Transverse metrator grid values, zone NAD 1983 UTM Zone 12 5005-food and values / drama State Plane coordinate system		
000000	Central zone (FIPSZONE 0202), Transverse Mercator projection		Ë.
DX5510	0 x Bench mark (see explanation in Notes to Users section of this FIRM panel)	G	l S
• M1.	.5 River Mile		Ĕ.
	MAP REPOSITORY Refer to listing of Map Repositories on Map Index		<u>ල</u> ි
	EFFECTIVE DATE OF COUNTYWIDE FLOOD INSURANCE RATE MAP	[도_	田
	September 3, 2010 EFFECTIVE DATE(S) OF REVISION(S) TO THIS PANEL		
For community	man revision history prior to countywide mapping, refer to the Community		18
Map History ta:	ble located in the Plood Insurance Study report for this jurisdiction. If flood insurance is available in this community, contact your Insurance		84
agent or call the	e National Flood Insurance Program at 1-900-638-6620.	<b>Je</b>	ш
		d	ΙH
	MAP SCALE 1" = 500' 250 0 500 1000		IJ
	FEET FEET		
	150 0 15D 300		
	FIRM		
	FLOOD INSURANCE RATE MAP		
	COCONINO COUNTY.		
	ARIZONA		
	PANEL 7459 OF 8475		
	(SEE MAP INDEX FOR FIRM PANEL LAYOUT)		
	COMMUNITY NUMBER PANEL SUFFIX		
	CODOMING COUNTY CADOLS 7458 G		
	Notice to User: The Map Number shown below should be		
	used when placing map orders; the Community Number shown above should be used on insurance applications for the subject community.		
	MAP NUMBER		
	EFFECTIVE DATE SEDTEMBER 2 2010		
	Federal Emergency Management Agency	Page	31
4		U	

9-3-10

Created:

Date

Odell Dam Safety Analysis

#### NOTES TO USERS

This map is for use in administering the National Flood Insurance Program. It does not necessarily identify all areas subject to flooding, panticularly from local drainage sources of small size. The community map repository should be consulted for possible updated or additional flood hazard information.

consulted for possible updated or additional flood hazard information. To obtain more detailed information in areas where **Base Flood Elevations**. (FEB) and/or **floodways** have been determined, users are encouraged to consult the Flood Flooties and Flootiway Data and/or Summary of Stillwater Elevatories this FIRM. Users should be aware that EFEs shown on the FIRM represent rounded whole-foot elevations. These BFEs are intended for flood insurance rating purposes only and should not be used as the sole source of flood elevation information. Accordingly, flood elevation data presented in the FIS report should be utilized in conjunction with the FIRM for purposes of construction and/or floodplain management.

Costal Base Flood Elevations shown on this map apply only landward of 0.0° North American Vertical Datum of 1988 (NAVD 88). Users of this FIRM should be avere that costal food elevations are also provided in the Summary of Sillwater Elevations table in the Flood Insurance Study report for this jurisdiction. Elevations shown in the Summary of Sillwater Elevations table should be used for construction and/or floodplain management purposes when they are bight than the elevations shown on the FIRM.

Boundaries of the **floodways** were computed at cross sections and interpolated between cross sections. The floodways were based on hydraulic considerations with regard to requirements of the National Flood Insurace Program. Floodway widhs and other pertinent floodway data are provided in the Flood Insurance Study report for this juridiction.

Certain areas not in Special Flood Hazard Areas may be protected by flood control structures. Refer to Section 2.4 "Flood Protection Measures" of the Flood Insuance Study report for information on flood control structures for this jurisdiction.

The projection used in the preparation of this map was Universal Transverse Mercador (UTM) Zone 12N. The horizontal datum was NAD 83, GR580. Differences in datum, spheroid, projection or UTM zones used in the production of FIRMs for adjacent initializations may result in slight positional differences in map features across jurisdictions buundaries. These differences do not affect the accuracy of this FIRM.

Flood elevations on this map are referenced to the North American Vertical Datum of 1988. These flood elevations must be compared to structure and ground elevations referenced to the same vertical datum. For information regarding conversion between the National Geodetic Vertical Datum of 1992 and the North American Vertical Datum of 1982, with the National Geodetic Survey website at <u>http://www.ngs.roag.gov</u> or contact the National Geodetic Survey at the flootwing address.

NGS Information Services NOAA, N/NGS12 National Geodetic Survey SSMC-3, #R202 1315 East-West Highway Silver Spring, Maryland 20910-3282 (301) 713-3242

To obtain current elevation, description, and/or location information for bench marks shown on this map, please contact the information Services Branch of the National Geodetic Survey at (301) 713-3242, or visit its webste at <u>http://www.ngs.noaa.gov</u>.

Base map information shown on this FIRM was derived from U.S. Geological Survey Digital Orthophoto Quadrangles produced at a scale of 1:12,000 from photography dated 1992 or later.

This map reflects more detailed and up-to-date stream channel configurations than those shown on the previous FIRM for this jurisdiction. The floodplains and floodways that were transferred from the previous FIRM may have been adjusted to conform to these new stream channel configurations. As a result, the Florback stream is subortistive hydraulic data model insurance Sludy Report hydroid contains subortistive hydraulic data) may reflect stream channel distances that differ from what is shown on this map.

Corporate limits shown on this map are based on the best data available at the time of publication. Because charges due to annexations or de-annexations may have occurred after this map was published, map users should contact appropriate community officials to verify current corporate limit locations.

Please refer to the separately printed **Wap Index** for an overview map of the county showing the layout of map panels, community map repository addresses, and a Listing of Communities table contraining National Flood Insurance Program dates for each community as well as a listing of the panels on which each community is located.

Contact the FEMA Map Service Center at 1-800-358-9616 for information on available products associated with this FIRM. Available products may include previously issued Letters of Map Change, a Rood Insurance Study report, and/or digital versions of this map. The FEMA Map Service Center may also be reached by Fast 1-900-358-902 and fs velsatile at <u>http://www.thms.gov/mcs</u>.

If you have questions about this map or questions concerning the National Flood insurance Program in general, please call 1-877-FEMA MAP (1-877-336-2627) or visit the FEMA website at http://www.fema.gov.



		W (200700) West Dy	1		
	CDECTA				
55555	SPECIAL BY THE	FLOOD HAZARD AREAS SUBJECT TO INUNDATION 1% ANNUAL CHANCE FLOOD			
The 1% annual chance of being area subject to I Zones A, AE, A clevation of the :	flood (100-yea equaled or er flooding by the H, AO, AR, A 1% annuel cha	r flood), also known as the base flood, is the flood that has a 1% usedial in any given year. The Special Flood Hazard area is the 1% annual charce flood. Areas of Special Flood Hazard include 80, V, and VE. The Base Flood Blevation is the water-surface nor flood.			
ZONE A	No Base Base Filo	Flood Bevations determined.			
ZONE AH	Flood d	epths of 1 to 3 feet (usually areas of ponding); Base Flood			
ZONE AO	Flood de	o becomined. spths of 1 to 3 feet (usually sheet flow on sloping benain); average determined. For areas of allusial fan flooding, windrities also			
ZONE AR	determin Special I filood by indicates	Hot Hazard Anas formerly protected from the 1% annual chance a flood control system that was subsequently decertified. Zone AR link the former flood control system is being restored to provide			A
ZONE A99	Area to protectio determin	or from the 1% annual drance or greater flood. be protected from 1% annual chance flood by a Federal flood or system under construction; no Base Flood Elevations ted.			EM,
ZONEV	Coasta i Elevation	flood zone with velocity hazard (wave action); no Base Flood is determined.		-3	Ы
ZONE VE	Coastal Elevation	flood zone with velocity hazard (wave action); Base Flood ns determined.		Ц	e:
1///	FLOODW	AY AREAS IN ZONE AE		nre	Irc
of encroachment in flood heights.	the channel of t so that the 19	a stream plus any adjacem holoppian areas that must be kept ince % annual chance flood can be carried without substantial increases		<u>.</u>	00
	OTHER F	LOOD AREAS		щ	S
ZONE X	Areas of average 1 source	0.2% annual chance flood; areas of 1% annual chance flood with depths of less than 1 foot or with drainage areas less than mile: and areas protected by levees from 1% annual chance flood.			
	OTHER A	AREAS			
ZONE X ZONE D	Areas de Areas in	termined to be outside the 0.2% annual chance floodplain. which flood hazards are undetermined, but possible.			
0112	COASTA	L BARRIER RESOURCES SYSTEM (CBRS) AREAS			
11/11	OTHERW	/ISE PROTECTED AREAS (OPAs)			
CBRS areas and	OPAs are norm	ally located within or adjacent to Special Flood Hazard Areas. 1% annual chance floodplain boundary			
-		0.2% annual chance floocplain boundary			
		Floodway boundary Zone D boundary			
•••••	•••••	CBRS and OPA boundary		S	പ
<b>Manager</b>	-	boundary dividing Special Hood Hazard Area Zones and —boundary dividing Special Flood Hazard Areas of different Base Flood Elevations, flood cepths or flood velocities.			uc
	· · · •	-Limit of Moderate Wave Action		Ϋ́	ste
~~~ 513 -	~~~	Base Rood Elevation line and value; elevation in feel* Base Rood Revation value where uniform within zone: elevation			ap
* Referenced to	dhe North Ame	in feet" rican Vertical Datum of 1988		p	
@	A	Cross section line		ŏ	g
87°07'45", 32	* 22'30"	Geographic coordinates referenced to the North American Delumo C 1092 (MAD 82) Viscland Memicohant		E	esi
-176-201N	l.	1000-meter Universal Transverse Mercator grid values, zone NAD 1983 JITM Zone 12			Ă
600000	FT	5000-foot grid values: Arizona State Piane coordinate system, Central zone (EIDS270JE 0202) Transverse Mercator projection		IA	പ്പ
DX5510	1	Bench mark (see explanation in Notes to Users section of this		\mathbf{N}	iri
• M1.	5 S	FIRM panel) River Mile		E	lee
				Ξ.	ii.
	Referts	MAP REPOSITORY Slisting of Map Repositories on Map Index			gug
	E	FECTIVE DATE OF COUNTYWIDE FLOOD INSURANCE RATE MAP		Ξ ι	щ
	EFFECTIVE	E DATE(S) OF REVISION(S) TO THIS PANEL		X	ບ່
For community	map revision l	sistory prior to countywide mapping, refer to the Community		di.	36
To determine I	ie located in t	he Hood Insurance Study report for this jurisdiction. Ince is available in this community, contact your Insurance		n n	4
agent or call the	National Flood	Insurance Program at 1-830-638-6620.		ŏ	E
				Q	Ξ
		MAP SCALE 1" = 500'		\mathbf{A}	U
	150	0 150 300]		
5		ц.			
ĺ	NFIL	PANEL 7467G)		
	M	FIRM			
		ELOOD INSURANCE RATE MAR			
	199				
	ŏ	ARIZONA			
		AND INCORPORATED AREAS			
	ເພ	DANEL 7407 OF MITE			
	5	(SEE MAP INDEX FOR FIRM PANEL LAYOUT)			
		CONTAINS:			
		COMMUNITY NUMBER PAREL SUFFIX COCOMING COUNTY 542015 7467 G			
	B				
	6				
	0	Notice to User. The Map Number shown below should be used when placing map orders; the Community Number			
		shown above should be used on insurance applications for the subject community.			
		MAP NUMBER			
		04005C7467G			

NPATTIONNE

EFFECTIVE DATE

SEPTEMBER 3, 2010

Federal Emergency Management Agency

9-3-10

Date Created:

Analysis

Odell Dam Safety

Figure G-1 shows the delineated watershed that encompasses the project area.

<u> Appendix H – NOAA Atlas 14' Intensities</u>	Figure H-1		
CENE 486C – Engineering Design Capstone	Source: NOAA Atlas 14'		
Odell Dam Safety Analysis	Date Created: 10-19-14		

AMS-based precipitation frequency estimates with 90% confidence intervals (in inches/hour) ¹									
Duration				Annual exce	edance probabi	ility (1/years)			
Duration	1/2	1/5	1/10	1/25	1/50	1/100	1/200	1/500	1/1000
5-min	3.73	5.42	6.64	8.29	9.61	11.1	12.6	14.7	16.6
	(3.19-4.36)	(4.63-6.30)	(5.65-7.72)	(7.00-9.60)	(8.06-11.1)	(9.18-12.8)	(10.3-14.6)	(11.9-17.2)	(13.2-19.6)
10-min	2.84	4.13	5.05	6.31	7.31	8.41	9.55	11.2	12.6
	(2.43-3.31)	(3.52-4.80)	(4.30-5.87)	(5.33-7.30)	(6.14-8.46)	(6.98-9.74)	(7.84-11.1)	(9.03-13.1)	(10.0-14.9)
15-min	2.34	3.41	4.18	5.22	6.04	6.95	7.90	9.26	10.4
	(2.01-2.74)	(2.91-3.96)	(3.55-4.86)	(4.40-6.04)	(5.07-6.99)	(5.77-8.05)	(6.48-9.16)	(7.46-10.8)	(8.27-12.3)
30-min	1.58	2.30	2.81	3.51	4.07	4.68	5.32	6.24	7.02
	(1.35-1.84)	(1.96-2.67)	(2.39-3.27)	(2.97-4.06)	(3.41-4.71)	(3.89-5.42)	(4.36-6.17)	(5.03-7.29)	(5.57-8.29)
60-min	0.978	1.42	1.74	2.17	2.52	2.90	3.29	3.86	4.35
	(0.837-1.14)	(1.21-1.65)	(1.48-2.02)	(1.84-2.52)	(2.11-2.91)	(2.41-3.36)	(2.70-3.82)	(3.11-4.51)	(3.45-5.13)
2-hr	0.554	0.789	0.961	1.20	1.39	1.60	1.83	2.15	2.43
	(0.486-0.638)	(0.690-0.906)	(0.834-1.10)	(1.03-1.37)	(1.19-1.59)	(1.36-1.84)	(1.53-2.09)	(1.76-2.47)	(1.95-2.80)
3-hr	0.404	0.558	0.673	0.830	0.957	1.10	1.25	1.47	1.65
	(0.359-0.460)	(0.494-0.634)	(0.592-0.763)	(0.725-0.940)	(0.829-1.08)	(0.942-1.25)	(1.06-1.42)	(1.22-1.68)	(1.35-1.90)
6-hr	0.254	0.339	0.401	0.487	0.555	0.631	0.708	0.816	0.905
	(0.230-0.283)	(0.305-0.377)	(0.360-0.446)	(0.434-0.541)	(0.491-0.616)	(0.553-0.701)	(0.612-0.789)	(0.694-0.915)	(0.757-1.02)
12-hr	0.165	0.217	0.254	0.301	0.338	0.376	0.414	0.468	0.511
	(0.149-0.183)	(0.196-0.241)	(0.228-0.281)	(0.270-0.334)	(0.300-0.373)	(0.331-0.417)	(0.362-0.460)	(0.404-0.523)	(0.436-0.574)
24-hr	0.100	0.135	0.160	0.192	0.217	0.243	0.269	0.305	0.334
	(0.090-0.113)	(0.120-0.152)	(0.142-0.180)	(0.169-0.215)	(0.191-0.243)	(0.213-0.273)	(0.234-0.303)	(0.263-0.344)	(0.285-0.377)
2-day	0.061	0.083	0.098	0.119	0.134	0.151	0.168	0.192	0.210
	(0.055-0.069)	(0.074-0.093)	(0.088-0.110)	(0.105-0.133)	(0.119-0.150)	(0.133-0.169)	(0.147-0.188)	(0.165-0.215)	(0.180-0.237)
3-day	0.044	0.060	0.072	0.087	0.099	0.111	0.124	0.143	0.157
	(0.040-0.050)	(0.054-0.067)	(0.064-0.080)	(0.077-0.097)	(0.087-0.110)	(0.098-0.124)	(0.109-0.139)	(0.123-0.160)	(0.135-0.177)
4-day	0.036	0.049	0.058	0.071	0.081	0.092	0.103	0.118	0.130
	(0.032-0.040)	(0.044-0.054)	(0.052-0.065)	(0.063-0.079)	(0.071-0.090)	(0.081-0.102)	(0.090-0.114)	(0.102-0.132)	(0.112-0.146)
7-day	0.024	0.032	0.038	0.046	0.053	0.059	0.066	0.076	0.084
	(0.021-0.026)	(0.029-0.036)	(0.034-0.042)	(0.041-0.051)	(0.047-0.058)	(0.052-0.066)	(0.058-0.073)	(0.066-0.085)	(0.072-0.094)
10-day	0.019	0.025	0.030	0.035	0.040	0.044	0.049	0.055	0.060
	(0.017-0.021)	(0.023-0.028)	(0.027-0.033)	(0.032-0.039)	(0.036-0.044)	(0.039-0.049)	(0.043-0.054)	(0.048-0.061)	(0.052-0.067)
20-day	0.013	0.017	0.019	0.023	0.025	0.027	0.029	0.032	0.034
	(0.012-0.014)	(0.015-0.019)	(0.017-0.021)	(0.020-0.025)	(0.022-0.027)	(0.024-0.030)	(0.026-0.033)	(0.029-0.036)	(0.030-0.038)
30-day	0.010	0.014	0.016	0.018	0.020	0.022	0.023	0.025	0.027
	(0.009-0.011)	(0.012-0.015)	(0.014-0.017)	(0.016-0.020)	(0.018-0.022)	(0.019-0.024)	(0.021-0.026)	(0.022-0.028)	(0.024-0.030)
45-day	0.008	0.011	0.012	0.014	0.016	0.017	0.019	0.020	0.022
	(0.007-0.009)	(0.009-0.012)	(0.011-0.014)	(0.013-0.016)	(0.014-0.018)	(0.015-0.019)	(0.016-0.021)	(0.018-0.023)	(0.019-0.025)
60-day	0.007	0.009	0.011	0.012	0.014	0.015	0.016	0.017	0.018
	(0.006-0.008)	(0.008-0.011)	(0.010-0.012)	(0.011-0.014)	(0.012-0.015)	(0.013-0.017)	(0.014-0.018)	(0.015-0.019)	(0.016-0.021)

¹ Precipitation frequency (PF) estimates in this table are based on frequency analysis of annual maxima series (AMS).

Numbers in parenthesis are PF estimates at lower and upper bounds of the 90% confidence interval. The probability that precipitation frequency estimates (for a given duration and annual exceedance probability) will be greater than the upper bound (or less than the lower bound) is 5%. Estimates at upper bounds are not checked against probable maximum precipitation (PMP) estimates and may be higher than currently valid PMP values.

Please refer to NOAA Atlas 14 document for more information.

Б

<u> Appendix I – Oak Creek Flood Warning</u>	Figure I-2		
CENE 486C – Engineering Design Capstone	Source: Oak Creek Flood Warning		
Odell Dam Safety Analysis	Date Created: June 1990		

Appendix J – Time Depth Table							Table J-1						
CENE 486C – Engineering Design Capstone							Source: Char	dler Hammo					
	(Ddell Dam Saf	ety Analysis				Date Created:	12-1-2014					
Time Depth Table			Strom Event										
(inc	hes)	1 Year	2 Year	5 Year	10 Year	25 Year	r 50 Year	100 Year	200 Year	500 Year	1000 Year		
	0.5	0.68	0.88	1.18	1.43	1.77	2.04	2.34	2.66	3.12	3.51		
	1	0.84	1.09	1.46	1.76	2.19	2.53	2.9	3.29	3.86	4.35		
	1.5	0.905	1.165	1.54	1.855	2.3	2.66	3.055	3.475	4.085	4.6		
	2	0.97	1.24	1.62	1.95	2.41	2.79	3.21	3.66	4.31	4.85		
(hours	2.5	1.02	1.295	1.67	2	2.46	2.84	3.255	3.705	4.36	4.905		
e Step	3	1.07	1.35	1.72	2.05	2.51	2.89	3.3	3.75	4.41	4.96		
n Tim	3.5	1.118333	1.406667	1.781667	2.115	2.58	2.965	3.38	3.831667	4.49	5.036667		
Duratic	4	1.166667	1.463333	1.843333	2.18	2.65	3.04	3.46	3.913333	4.57	5.113333		
Π	4.5	1.215	1.52	1.905	2.245	2.72	3.115	3.54	3.995	4.65	5.19		
	5	1.263333	1.576667	1.966667	2.31	2.79	3.19	3.62	4.076667	4.73	5.266667		
	5.5	1.311667	1.633333	2.028333	2.375	2.86	3.265	3.7	4.158333	4.81	5.343333		
	6	1.36	1.69	2.09	2.44	2.93	3.34	3.78	4.24	4.89	5.42		

Table J-1: Time depth table, interpolated for Bentley PondPack Parameters.

Appendix K – Time Depth Curves	Table K-1
CENE 486C – Engineering Design Capstone	Source: Bentley PondPack
Odell Dam Safety Analysis	Date Created: 12-1-2014

Table K-1: Graphical representation of the interpolated Time depths. Time Depth Curve.

Appendix L – Inflow Hydrographs	Figure L-1
CENE 486C – Engineering Design Capstone	Source: Bentley PondPack
Odell Dam Safety Analysis	Date Created: 12-1-2014

Table L-1: The 2 Year Inflow Hydrograph of pre-burn and 80% post-burn.

Appendix L – Inflow Hydrographs	Figure L-2
CENE 486C – Engineering Design Capstone	Source: Bentley PondPack
Odell Dam Safety Analysis	Date Created: 12-1-2014

Table L-2: The 5 Year Inflow Hydrograph of pre-burn and 80% post-burn.

<u>Appendix L – Inflow Hydrographs</u>	Figure L-3
CENE 486C – Engineering Design Capstone	Source: Bentley PondPack
Odell Dam Safety Analysis	Date Created: 12-1-2014

Table L-3: The 25 Year Inflow Hydrograph of pre-burn and 80% post-burn.

Appendix L – Inflow Hydrographs	Figure L-4
CENE 486C – Engineering Design Capstone	Source: Bentley PondPack
Odell Dam Safety Analysis	Date Created: 12-1-2014

Table L-4: The 50 Year Inflow Hydrograph of pre-burn and 80% post-burn.

Appendix L – Inflow Hydrographs	Figure L-5
CENE 486C – Engineering Design Capstone	Source: Bentley PondPack
Odell Dam Safety Analysis	Date Created: 12-1-2014

Table L-5: The 100 Year Inflow Hydrograph of pre-burn and 80% post-burn.

Appendix L – Inflow Hydrographs	Figure L-6
CENE 486C – Engineering Design Capstone	Source: Bentley PondPack
Odell Dam Safety Analysis	Date Created: 12-1-2014

Table L-6: The 200 Year Inflow Hydrograph of pre-burn and 80% post-burn.

Appendix L – Inflow Hydrographs	Figure L-7
CENE 486C – Engineering Design Capstone	Source: Bentley PondPack
Odell Dam Safety Analysis	Date Created: 12-1-2014

Table L-11: The 500 Year Inflow Hydrograph of pre-burn and 80% post-burn.

Appendix L – Inflow Hydrographs	Figure L-8
CENE 486C – Engineering Design Capstone	Source: Bentley PondPack
Odell Dam Safety Analysis	Date Created: 12-1-2014

Table L-8: The 1000 Year Inflow Hydrograph of pre-burn and 80% post-burn.

Appendix M – Gantt Chart – Final		Figure M-1							
CENE 486C – Engineering Design Capstone		Source: Gan	tt Project						
Odell Dam Safety Analysis		Date Created	: 12-1-2014						
GANTT project	2014		1						
Name	February	March	April	May	/	June	July	August	September
 Odell Dam Safety Analysis 					_	_			
🗉 🔍 Project Management		_			_	_	_		
 Literature Review 		_	Literature R	eview					
Past Dam Failures			Past Dam Fa	ilures					
 State and Federal Dam Safety 	State a	nd Federal Dam S	afety References (S	юта)					
 FEMA 				FEMA					
ADWR			A	DWR					
 Existing Conditions 			Existing Cond	litions					
 USACE 			U	SACE					
 USGS 				USGS					
e Surveying								· · · ·	Surveying
 Survey Existing Infrastructure 								Survey Existing I	nfrastructure
 Geotechnical Sampling 								Geote	chnical Sampling
😑 🔹 Soil Analysis									Soil Analysis
 Soil Classification 									Soil Classification
 Hydrologic Analysis 									Hyd
Determine Watershed									Determine Wa
 Determine Storm Recurrence In 								De	termine Storm Recu
Post Burn Research									Pos
 NOAA 									
NSS									
RocScience Modeling									
 Slope Stability Analysis 									
PondPack Modeling									
 Hydraulic Modeling 									
Final Reporting Figure M-1: Final Project Gantt Chart: 12-1-2014									

l Octoł	oer	l Nover	nber	I	December	,
_		Odell Dai	ysis			
			-			
-	-		-		-	
	-					
_	_				_	_
_	_		-			
-	-					-
	-			-		
-		-		-		
_	_	_				_
rologic A	nalysis					
atershed	1					-
Irrence Ir	itervals					
t Burn Re	search	-	-			
NC		_			_	
	<u> </u>					
NSS						
	RocSci	ence Mode	ling			
	Slope St	ability Ana	lysis			
	Pone	IPack Mode	ling			
	Hyd	aulic Mode	ling			
			Final	Repo	ting	
_						

Appendix N – Gantt Chart – Proposal		Figure N-1					
CENE 486C – Engineering Design Capstone		Source: Gantt Project					
Odell Dam Safety Analysis		Date Created: 4-14-2014					
				2014			
Name	bruary March	n April		May	August	September	October
□·· ● ODell Dam Failure Analysis				-			_
Project Management							_
State Of The Art Research (SOTA)		State Of T	ne Art Research (SO	TA)			
Lidght Detecion and Ranging (Lidght Detecio	n and Ranging (LiD.	AR)			
Past Dam Failures			Past Dam Failu	Jres			
		State and Federal Dam Sa	fety References (SO	TA)			
Site Inventory					-	Site Inventory	
Survey Existing Infrastructure						Survey Existing Infrastructure	
Geotechnical Analysis						Geotechnical Analysi:	5
Soil Analysis						Soil Analysi:	5
Water Content						Water Content	
 Specific Weight 						Specific Weight	
Friction Angle						Friction Angle	
• Infiltration						Infiltration	
Soil Classification						Soil Classification	n I
□·· ● Watershed Analysis							Watershed Analysis
Use of LiDAR						Use of	LIDAR
Oetermine Watershed							Determine Watershed
Oetermine Storm Recurrence I					Determine Storm	Recurrence Intervals	
NOAA						NOAA	
⊡ • Dam Failure Analysis							
Failure Probability							_
Geotechnical Failure Analysis						Geotechnical Fa	ilure Analysis
Structural Failure Analysis							Structural Failure Ana
Hydraulic failure Analysis							Hydra
• Hydraulic Modeling							
Modeling Software							
Inundation							

Figure N-1: Project Proposal Gantt Chart: 4-14-2014

	 December								
ODell Dam Failure Analysis									
Project Management									
	-	-							
	_	-							
_									
	_	_							
_	_	_	_						
_	_	_	-	_	_				
Dam Enili	ura Anak	eie		_					
Failure	Probabil	ity		_					
randle	. 100201		_	_		_			
sis		_		_	-				
ic failure Ana	lvsis			-	-				
	Hvdra	ulic Mod	felina	-		_			
Modeling Software									
		Inun	dation	_		-			
Final Reporting									